Stability of ball proximinality
نویسندگان
چکیده
In this paper, we show that if E is an order continuous Köthe function space and Y is a separable subspace ofX, then E(Y ) is ball proximinal in E(X) if and only if Y is ball proximinal in X. As a consequence, E(Y ) is proximinal in E(X) if and only if Y is proximinal in X. This solves an open problem of Bandyopadhyay, Lin and Rao. It is also shown that if E is a Banach lattice with a 1-unconditional basis and for each n, Yn is a subspace of Xn, then (⊕Yn)E is ball proximinal in (⊕Xn)E if and only if each Yn is ball proximinal in Xn.
منابع مشابه
Strong proximinality and intersection properties of balls in Banach spaces
We investigate a variation of the transitivity problem for proximinality properties of subspaces and intersection properties of balls in Banach spaces. For instance, we prove that if Z ⊆ Y ⊆ X, where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y is an M -ideal in X, then Z is strongly proximinal in X. Towards this, we prove that a finite co-dimensional proxi...
متن کاملVarious Notions of Best Approximation Property in Spaces of Bochner Integrable Functions
We show that a separable proximinal subspace of X, say Y is strongly proximinal (strongly ball proximinal) if and only if Lp(I, Y ) is strongly proximinal (strongly ball proximinal) in Lp(I,X), for 1 ≤ p <∞. The p =∞ case requires a stronger assumption, that of ’uniform proximinality’. Further, we show that a separable subspace Y is ball proximinal in X if and only if Lp(I, Y ) is ball proximin...
متن کاملProximinality properties in Lp (μ,X) and polyhedral direct sums of Banach spaces
For a closed subspace Y of a Banach space X, we define a separably determined property for Y in X. Let (P) be either proximinality or strong 1 1 2 -ball property and if (P) is separably determined for Y in X, then we prove that L1(μ, Y ) has the same property (P) in L1(μ,X). For an M -embedded space X, we give a class of elements in L1(μ,X ∗∗) having best approximations from L1(μ,X). We also pr...
متن کاملOn the Proximinality of the Unit Ball of Proximinal Subspaces in Banach Spaces: a Counterexample
A known, and easy to establish, fact in Best Approximation Theory is that, if the unit ball of a subspace G of a Banach space X is proximinal in X, then G itself is proximinal in X. We are concerned in this article with the reverse implication, as the knowledge of whether the unit ball is proximinal or not is useful in obtaining information about other problems. We show, by constructing a count...
متن کاملOn the Proximinality of Ridge Functions
Using two results of Garkavi, Medvedev and Khavinson [7], we give sufficient conditions for proximinality of sums of two ridge functions with bounded and continuous summands in the spaces of bounded and continuous multivariate functions respectively. In the first case, we give an example which shows that the corresponding sufficient condition cannot be made weaker for some subsets of Rn. In the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 183 شماره
صفحات -
تاریخ انتشار 2014